Section 12.2 part 3

$F \subseteq K$ - field extension Gal $K=\{\sigma: K \longrightarrow K \backslash G(c)=c$ for every $c \in F$ y $\left.\begin{array}{ll}\text { field isomorphism } \\ \text { automorphism }\end{array} \quad \sigma\right|_{F}=$ identity reap
Intermediate fields
Galois Correspondence Subgroups

$$
F \subseteq E \subseteq K
$$

$$
\operatorname{Gal}_{E} K \subseteq \operatorname{Gal}_{F} K
$$

$$
\left.E_{H}=h k \in K \mid \sigma(k)=k \text { for every } \sigma \in H\right\} \quad H \subseteq \operatorname{Gal}_{F} K
$$

fixed field of H
Extreme cases

$$
\begin{array}{lcl}
E=K & \longleftrightarrow u\rangle= & G_{a l_{K}} K \subseteq G_{a l} K \\
E=F & & G_{a l_{F}} K \subseteq G_{a l_{F}} K \\
& F=\mathbb{B} \quad K=\Delta(\sqrt[3]{2}) & \text { it may happen that Gal } K
\end{array}
$$

In general, what may go soronly?

$$
E \leadsto H=\operatorname{Gal}_{E} K \leadsto E_{H} \quad \text { Clearly, } E_{H} \supseteq E
$$

Is every intermediate subfield the fixed field of some subgroul

However, elements of $\mathrm{Gal}_{E} K$ may fix a bigger subfield besides E $E_{H} \neq E$
of Gal FK? - No
Under which extra conditions the answer is YES? (Th12.9)

$$
\operatorname{Gal}_{F} k \geqslant H \leadsto E_{H} \leadsto G_{E_{H}}
$$

Is every subgroup $H \subseteq G_{a l_{F}} K$ the Galois gran p of an intermediate field? (Th 12.8) - Yes

Clearly, $H \subseteq \operatorname{Gal}_{E_{H}} K$
However, there may be elements of $\mathrm{Gal}_{E_{H}} K$ are not in H but still fix E_{H}

Lemma 12.7
Let K be a finite-dimensional extension of $F \quad K \supseteq F \quad\left\{\begin{array}{l}\text { finite-dimensional } \\ \text { implies algebraic }\end{array}\right.$ Let $H \subseteq G_{a l} K$.
Let E_{H} be the fixed field of H
The the extension $K \supseteq E_{M}$ is simple, normal, separable
Rene $\mathbb{Q}(\sqrt[3]{2}) \supset \mathbb{Q}$ is not normal: the polynomial $x^{3}-2 \in \mathbb{Q}[x]$ has a root, $\sqrt[3]{2} \in \mathbb{D}(\sqrt[3]{2})$ but does not split completely.

Pf Pick any $u \in K$. There may be only finitely many element $\sigma(u)$ for all $\sigma \in H$ (nothing but the coots of the minimal polynomial of u).
Let those which ocure be $u_{1}, \ldots, u_{t} \in K$ (all distinct).
Consider $f=\left(x-u_{1}\right) \ldots\left(x-u_{t}\right) \in K[x]$
Claim: $f \in E_{H}(x)$. That happens because every $\sigma \in H$ performs a percuntation of u_{1}, \ldots, u_{t}.
Thus every $\sigma E H$ only permutes the factors
in f, but does not alter f itself. Therefore, every $\sigma \in H$ fixes all coefficients of f. Thins $f \in E_{H}[x]$.

We conclude that every element $u \in K$ is a root of a separable polynomial $f \in E_{H}[x]$ (f is constructed starting from u - He construction depends on u).
That means $E_{H} \subseteq K$ is separable (by the def of separability).
Furthermore, $E_{H} \subseteq K$ is finite-dimensional (because $F \subseteq K$ is finite-dimensional) therefore finitely generated.
By Thill. $\left.18 \begin{array}{c}\text { finitely generated } \\ \text { separable }\end{array}\right\}$ imply simple $\quad K=E_{H}(u)$ separable $\quad u \in K$
Take all $\sigma(u)$ for $\sigma \in H$ call them
$u_{1}, \ldots, u_{t} \in K$, and consider $f=\left(x-u_{1}\right) \ldots\left(x-u_{t}\right) \in E_{H}[x]$ f splits completely in k.
Thus K is the splitting field of $f \in E_{H}[x]$, therefore normal by ThII.IS.

Th 12,8 bet K be finite-dimensional over $F \quad K \supseteq F$
Let $H \subseteq$ Gal $_{F} K$ - subgroup.
Let $E_{H}=E$ be the fixed field of H.
Then $H=G_{a l} K$ and $|H|=[K: E]$.
Pf From Lemma $12.7, K \supseteq E$ is simple $K=E(u), u \in K$.
Thus by $T h 11.7, \quad[k: E]=\operatorname{deg} p=n$, whet p is the minimal polynomial of u.
For distinct $\sigma \in G a Z_{E} K$, the elements $\sigma(u)$ are distinct roots of p. (Th 12.2, 12.4) Thus $\left|G_{a l} K\right| \leq n$
Clearly, $H \subseteq G_{a l} K$ (by the definition of E_{H})
Thus $|H| \leq\left|\operatorname{Gal}_{E} K\right| \leq n=[K: E]$
wanted: an opposite inequality.
Consider all distinct $\nabla(u)$ for $\sigma \in H$. Call them u_{1}, \ldots, u_{t}, and let

$$
f=\left(x-u_{1}\right) \ldots\left(x-u_{t}\right)
$$

$$
|H| \geq t
$$

Since $f(u)=0$, we have $p \mid f$ because the minimal polynomial
of u divides any polynomial which has u as a root.
Thins $\operatorname{deg} p \leq \operatorname{deg} f$
We have so far
$|H| \geqslant t=\operatorname{deg} f \geqslant \operatorname{deg} p=h=[K: E]$ - the opposite inequality
Thus $|H|=n=G_{a l_{E}} K=[K: E]$.
From $H \subseteq G_{a l}$ and $|H|=$ Gal $_{E} K$ we conelud that $H=\operatorname{Gal}_{E}$.

